Minggu, 03 Juni 2012

Pembangkit Listrik Tenaga Nuklir



Pembangkit listrik tenaga nuklir (PLTN), misalnya, mengupayakan untuk mengambil energi yang dilepas ketika sebuah inti atom pecah menjadi inti atom yang lebih kecil (disebut reaksi fisi). Tempat terjadinya reaksi ini di dalam PLTN disebut reaktor. Reaksi tersebut harus dapat dikontrol oleh operator (manusia), jika tidak maka terjadi reaksi berantai yang tak-terkendali dan dapat berakibat fatal (seperti meledak).
Inti atom yang dipecah berasal dari atom yang tidak stabil (radioaktif) seperti Uranium-235 (U-235). U-235 adalah isotop Uranium yang sangat sensitif terhadap reaksi berantai. Dalam teknik nuklir, partikel yang mampu memberikan reaksi berantai ini disebut fissile. Angka 235 adalah nomor massa atom yang menunjukkan jumlah proton dan neutron dalam intinya. Proton dan neutron adalah partikel penyusun inti atom, disebut nukelon.
Reaksi berantai dari U-235.
Untuk menghasilkan reaksi berantai, inti atom U-235 ditembak oleh sebuah neutron yang bergerak lambat (disebut “slow neutron” atau juga “thermal neutron“). Kecepatan gerak neutron sesungguhnya dapat diatur, tapi telah dihitung sedemikian rupa sehingga reaksi berantai dari gerakan neutron yang lambat lebih mudah dikontrol. Ketika slow neutron mengenai targetnya, yaitu inti atom U-235, inti atom pecah menjadi dua buah inti atom yang lain dan sejumlah neutron. Neutron-neutron hasil dari reaksi ini akan mengenai inti atom-inti atom U-235 lainnya dan begitu seterusnya. Inilah yang disebut “reaksi berantai” (chain reaction).
Saya ulangi lagi, reaksi berantai harus dapat dikendalikan oleh operator, dan oleh karena itulah kecepatan neutron pertama yang ditembakkan harus rendah supaya reaksi berantai yang dihasilkan dapat dikendalikan. Dalam bom nuklir, jutru dibutuhkan reaksi berantai yang tak-terkontrol sehingga energi yang dihasilkan sangat besar.http://srijono.blog.uns.ac.id/wp-includes/js/tinymce/plugins/wordpress/img/trans.gif
Energi kinetik slow neutron yang biasa ditembakkan adalah sekitar 7,5 MeV — MeV adalah Mega electronVolt, sebuah satuan energi dengan 1 eV = 1,6 x 1019 joule, sangat kecil! Energi hasil reaksi fisi adalah 8,4 MeV. Perbedaan 0,9 MeV per nukleon berasal dari energi yang dilepas oleh reaksi fisi. Energi ini berasal dari energi ikat antarnukleon di dalam inti. Dengan demikian, total energi yang dilepas setiap reaksi fisi U-235 adalah jumlah nukleon dikali energi per nukleon, yaitu 235 x 0.9 MeV atau sekitar 200 MeV per satu inti atom.
Kecil? Ya, angka yang kecil. Tapi jangan lupa, perhitungan di atas adalah untuk satu inti atom U-235, yang mana massa satu inti atom U-235 sekitar (pembulatan) 3,9 x 10-22 gram. Artinya, 1 gr U-235 mengandung sekitar 1/3,9×10-22 = 2,8 x 1021 buah inti atom U-235. Jika semua bereaksi dalam reaktor, maka dihasilkan energi sejumlah 200 x 2,8 x 1021 MeV = 5,6 x 1023 MeV  atau sekitar 8,9 Megajoule. Energi sebanyak ini dapat dihasilkan oleh pembakaran batu bara sebanyak 2650 ton kg batu bara!!! (Jangan lupa, selain energi batu bara juga menghasilkan polusi.)
Prinsip dasar kerja PLTN
­            Nah, berikut ini hal yang menarik: bagaimana mengubah energi sebanyak itu menjadi listrik dalam sebuah PLTN? Jawabannya cukup mencengangkan, atau mungkin mengecewakan bagi sebagian kita: energi sejumlah itu dipakai untuk mendidihkan segentong air sehingga menjadi uap. Uap itu kemudian dialirkan lewat pipa-pipa yang kemudian dapat menggerakkan turbin-turbin. Di belakang turbin ada generator yang bekerja seperti sebuah dinamo raksasa yang bertugas mengubah energi gerak mekanik menjadi energi listrik. (Berbeda dengan motor yang mengubah energi listrik menjadi energi gerak mekanik, atau enjin yang mengubah energi hasil pembakaran menjadi energi gerak mekanik). Proses awal yang “very high technology” ternyata diakhiri oleh “very old-style conventional technology“, hehehe.
Secara sederhana, skematik tersebut dapat dijelaskan sebagai berikut. Reaksi fisi berantai terjadi di reaktor (C), dengan bahan bakar  U-235 dalam bentuk batangan (kira-kira sepanjang 2,5 cm). Batangan U-235 dikontrol oleh batang pengontrol (B). Operator menaikturunkan batang pengontrol ini untuk mengontrol kecepatan reaksi berantai. Batang turun berarti semakin cepat reaksi terjadi, begitu juga sebaliknya.
Energi yang dihasilkan oleh reaksi fisi dibawa dalam bentuk panas oleh fluida khusus ke tabung air (D). Panas ini mendidihkan air yang uapnya dibawa oleh pipa untuk menggerakkan turbin (H). Di belakang turbin ada generator (G) yang mengubah energi gerak mekanik menjadi listrik.
Uap air yang telah menggerakkan turbin kehilangan panasnya dan berubah kembali menjadi air. Untuk mempercepat proses pendinginan, air dingin dari menara air (J) disalurkan lewat pipa (I). Air yang telah dingin dipompa ke (D). Begitu seterusnya. Mekanisme turbin dan generator yang mengubah energi mekanik menjadi energi listrik adalah pembahasan tersendiri.

Tidak ada komentar:

Posting Komentar